
Query evaluation
Cost-based transformations

Lecture 03.04.

By Marina Barsky
Winter 2017, University of Toronto

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

{P1,P2,…..}

parse

convert

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

improve logically

Cost-based query optimization

• Sometimes we don’t need to compute the cost to decide
applying some heuristic transformation.

• E.g. Pushing selections down the tree, can be
expected almost certainly to improve the cost of a
logical query plan.

• However, there are points where estimating the cost both
before and after a transformation will allow us to apply a
transformation where it appears to reduce cost and avoid
the transformation otherwise.

Example: which plan to choose

Initial logical
query plan

Two candidates for the
best logical query plan.
Which one to choose?

Parameters to estimate the cost

• R: the name of the relation on disk

• B(R): number of blocks of R

• T(R): number of tuples of R

• V(R, a): number of distinct values in column a of R

Plus:

• Indexes

• Clustered-unclustered

Estimating the output of each
operation
• How can we estimate B(R) and T(R) in an intermediate

relation?

• We don’t want to execute the query in order to learn the
sizes. So, we need to estimate them.

Rules about estimation formulas:

1. Give (somehow) accurate estimates

2. Easy to compute

Estimating the output: Projection

The size of a (bag) projection is the only one we can compute
exactly.

1. Bag projection retains duplicates, so the number of tuples
T(R) in the result is the same as in the input.

2. Result tuples are usually shorter than the input tuples.

So what changes in the parameters
of the output relation?

Estimating the output: Selection
Equality: S = A=c (R)

We can estimate the size of the result as

T(S) = T(R) / V(R,A)

Range: S = A<c (R)

On average, T(S) would be T(R)/2, but from practice:

T(S) = T(R)/3

Inequality: S = Ac (R)

Then, an estimate is: T(S) = T(R) * [(V(R,A)-1)/V(R,A)],

or close to

T(S) = T(R)

Estimating the output:
Selection with conjunction
S = C AND D(R) = C(D(R))

First estimate T(D(R)) and then use this to estimate T(S).

Example

S = a=10 AND b<20(R)

T(R) = 10,000, V(R,a) = 50

T(S) = (1/50)* (1/3) * T(R) = 67

Note: Watch for selections like:

a=10 AND a>20(R)

Remember? Splitting rule

Why?

Cost-based optimization

1. Estimating cost of intermediate results

2. Maintaining vital statistics

3. Selecting order of joins

Estimating the output: Selection

Equality: S = A=c (R)

T(S) = T(R) / V(R,A)

Range: S = A<c (R)

T(S) = T(R)/3

Inequality: S = Ac (R)

T(S) = T(R)

Estimating the output:
Selection with disjunction

S = C OR D(R)

Add up: T(S) = T(C(R)) + T(D(R)).

Problem: It’s possible that T(S)T(R)!

A more accurate estimate

Let:

T(R)=n,

m1 = size of selection on C, and

m2 = size of selection on D.

Then T(S) = n(1-(1-m1/n)(1-m2/n)) Why?

Selection with disjunction:
example

Simple: T(S) = T(C(R)) + T(D(R))

Accurate: T(S) = n(1-(1-m1/n)(1-m2/n))

• Example: S = a=10 OR b<20(R).

T(R) = 10,000, V(R,a) =50

• Simple estimation: T(S) = 3533

• More accurate:

n = 10000, m1 = T(R)/V(R,a)=200, m2 = T(R)/3=3333

T(S) = 10000 *[1 - (1 – 200/10000)*(1 – 3333/10000)] =3466

Natural Join R(X,Y) ❖ S(Y,Z)

• Anything could happen!

Extremes

• No tuples join

T(R ❖ S) = 0

• All tuples join: i.e. R.Y=S.Y = a

T(R ❖ S) = T(R)*T(S)

Natural Join size estimation: heuristics

Estimate size of: P = R(X,Y) ⋈ S(Y,Z)

If V(R,Y) ≤ V(S,Y), then (in the worst case) each tuple r of R is going match

with some tuples of S. How many tuples on average that match to a given

value of Y? T(S)/V(S,Y) tuples of S.

Hence,

T(P) = T(R)*T(S)/V(S,Y)

By a similar reasoning, for the case when V(S,Y)  V(R,Y), we get

T(P) = T(S)*T(R)/V(R,Y)

In summary: T(P) = T(R)*T(S)/max{V(R,Y),V(S,Y)}

Join output estimation: example
R(a,b): T(R)=1000, V(R,b)=20

S(b,c): T(S)=2000, V(S,b)=50, V(S,c)=100

U(c,d): T(U)=5000, V(U,c)=500

a. Estimate the size of intermediate outputs for (R ❖ S) ❖ U

T(R ❖ S) = 1000*2000 / 50 = 40,000

T ((R ❖ S)❖ U) = 40000 * 5000 / 500 = 400,000

b. Estimate the size of intermediate outputs for R ❖ (S ❖ U)

T(S ❖ U) = 20,000

T(R ❖ (S ❖ U)) = 1000*20000 / 50 = 400,000

T(R ❖ S) = T(R)*T(S)/max{V(R,Y),V(S,Y)}

Estimate of final result should not depend on the evaluation order!

intermediate
results could be of
different sizes

c. Yet another order for R ❖ S ❖ U: (R  U) ❖ S

R(a,b): T(R)=1000, V(R,b)=20

S(b,c): T(S)=2000, V(S,b)=50, V(S,c)=100

U(c,d): T(U)=5000, V(U,c)=500

T(R  U) = 1000*5000 = 5,000,000

T((R  U)❖R.b=S.b AND U.c=S.c S) = 5,000,000 * 2000 / (50 * 500) = 400,000

Note that the cardinality of b’s in
the product is 20 (=V(R,b)), and the
cardinality of c’s is 500 (=V(U,c)).

T(R ❖ S) = T(R)*T(S)/max{V(R,Y),V(S,Y)}

Join output estimation: more

T(R ❖ S) = 1000*2000 / 50 = 40,000

T ((R ❖ S)❖ U) = 40000 * 5000 / 500 = 400,000

T(S ❖ U) = 20,000

T(R ❖ (S ❖ U)) = 1000*20000 / 50 = 400,000

T(R  U) = 1000*5000 = 5,000,000

T((R  U)❖ S) = 5,000,000 * 2000 / (50 * 500) = 400,000

Join output estimation: the
question is…

T(R)=1000

T(U)=5000

T(S)=2000

Which order is better?

A

B

C

Size estimates for other operators

Cartesian product: T(R  S) = T(R) * T(S)

Bag Union: T(R) + T(S)

Set union:

larger + half the smaller.

Intersection: half the smaller.

Difference: T(R-S) = T(R) - 1/2*T(S)

Why?

Because a set union can be as large as the sum of sizes or as small as the
larger of the two arguments. Something in the middle is suggested.

Because intersection can be as small as 0 or as large as the sizes of the
smaller. Something in the middle is suggested.

Because the result can be between T(R) and T(R)-T(S). Something in the
middle is suggested.

Why?

Size estimates for other operators (contd.)

Duplicate elimination  in (R(a1,...,an)):

The size ranges from 1 to T(R).

T((R))= V(R,[a1...an]), if available (but usually not available).

Otherwise: T((R))= min[V(R,a1)*...*V(R,an), 1/2*T(R)] is suggested.

Grouping and Aggregation:

similar to , but only with respect to grouping attributes.

Why?

V(R,a1)*...*V(R,an) is the upper limit on the number of distinct tuples that

could exist

1/2*T(R) is because the size can be as small as 1 or as big as T(R)

Exercises for size estimation

Estimate the sizes of relations that are the results of the following
expressions:

a) W ⋈ X ⋈ Y ⋈ Z

b) σa=10 (W)

c) σc=20 (W)

d) σc=20 (Y) ⋈ Z

e) W x Y

f) σ d>10 (Z)

g) σ a=1 AND b=2 (W)

h) σ a=1 AND b>2 (W)

W (a,b) X (b,c) Y (c,d) Z (d,e)

T (W) = 100 T (X) = 200 T (Y) = 300 T (Z) = 400

V (W, a) = 20 V (X, b) = 50 V (Y, c) = 50 V (Z, d) = 40

V (W, b) = 60 V (X, c) = 100 V (Y, d) = 50 V (Z, e) = 100

Computing the statistics

• In order to compute sizes of intermediate relations we need to know

T(R) and V(R) for each relation. In addition we would want to know

more precise estimates for each attribute value if the values are

skewed

• Computation of statistics by DBMS is triggered automatically or

manually.

• T(R)’s, and V(R,A)’s are just aggregation queries (COUNT queries).

• However, they are expensive to compute after each update

operation.

Incremental computation of
statistics
Maintaining T(R):

Add 1 for every insertion and subtract 1 for every deletion.

Incremental computation of
statistics
Maintaining V(R,A):

If there is an index on attribute A of a relation R, then:

On insert into R, we must find the A-value for the new
tuple in the index anyway, and so we can determine
whether there is already such a value for A. If not
increment V(R,A).

On deletion…

If there is no index on A, the system could in effect create a
rudimentary index by keeping a data structure (e.g. B-Tree)
that holds every distinct value of A.

Final option: Sample the relation.

For non-uniform value distributions we
want to estimate frequency of each value

• For index selection:

• What is the cost of an index lookup?

• Also for deciding which algorithm to use:

• Ex: To execute R ⋈ 𝑆, which join algorithm should DBMS
use?

• What if we want to compute 𝝈𝑨>𝟏𝟎(𝐑) ⋈ 𝝈𝑩=𝟏(𝑺)?

Histograms provide a way to efficiently
store estimates of these quantities

Histograms

• A histogram is a set of value ranges (“buckets”) and the
frequencies of values occurring in those buckets

• How to choose the buckets?

• Equiwidth & Equidepth

• Turns out high-frequency values are very important

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values

Frequency

How do we
compute how
many values
between 8 and
10?
(Yes, it’s obvious)

Problem: counts take up too much space!

Store counts for each distinct value

Full vs. Uniform Counts

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 101112131415

How much space
do the full counts
(bucket_size=1)
take?

How much space
do the uniform
counts
(bucket_size=ALL)
take?

Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we select the “bucket” sizes?

Equi-width

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets roughly the same width

Equi-depth

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets contain roughly the same
number of items (total frequency)

Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)

Maintaining Histograms

• Histograms require that we update them!

• Typically, you must run/schedule a command to update
statistics on the database

• Out of date histograms can be terrible!

• There is research work on self-tuning histograms and the
use of query feedback

• Oracle 11g

Nasty example

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. we insert many tuples with value > 16
2. we do not update the histogram
3. we ask for values > 20?

Compressed Histograms

• One popular approach:

1. Store the most frequent values and their counts
explicitly

2. Keep an equi-width or equi-depth one for the rest of the
values

People continue to try all manner of fanciness here
wavelets, graphical models, entropy models,…

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

{P1,P2,…..}

parse

convert

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

improve logically

Cost-based transformations of RA
trees

Initial logical
query plan

Two candidates for the
best logical query plan

Estimating sizes of relations to be
joined
(a)

The (estimated) size of a=10(R) is

5000/50 = 100

The (estimated) size of (a=10(R)) is

min{1*100, 100/2} = 50

The (estimated) size of (S) is

min{200*100, 2000/2} = 1000

T((R))= min[V(R,a1)*...*V(R,an), 1/2*T(R)]

(b)

The (estimated) size of a=10(R) :

5000/50 = 100

The (estimated) size of a=10(R)❖ S :

100*2000/200 = 1000

Estimating sizes of relations to be
joined

Comparing two plans

Adding up the costs of plan (a) and (b), (sizes of intermediate relations) we get:

(a) 1150

(b) 1100

So, the conclusion is that plan (b) is better,

i.e. deferring the duplicate elimination to the end is a better plan for this query.

Choosing
an order of joins

Choosing a join order

• Critical problem in cost-based optimization: Selecting an
order for the (natural) join of three or more relations.

• Cost is the total size of all intermediate relations.

• We have, of course, many possible join orders

• Does it matter which one we pick?

• If so, how do we do this?

Basic intuition

• T(R ❖ S) = 1000*2000 / 50 = 40,000

• T((R ❖ S) ❖ U) =

40000 * 5000 / 500 = 400,000

• T(S ❖ U) = 2000*5000 / 500 = 20,000

• T(R ❖ (S ❖ U)) = 1000*20000 / 50 =
400,000

R(a,b), T(R) = 1000, V(R,b) = 20

S(b,c), T(S) = 2000, V(S,b) = 50, V(S,c) = 100

U(c,d) T(U) = 5000, V(U,c) = 500

(R ❖ S) ❖ U versus R ❖ (S ❖ U)?

Both plans are estimated to
produce the same number of tuples
(no coincidence here).

However, the first plan is more
costly than the second plan because
the size of its intermediate relation
is bigger than the size of the
intermediate relation in the second
plan (40K versus 20K)

Asymmetricity of Joins

• In some join algorithms, the roles played by the two argument relations are
different, and the cost of join depends on which relation plays which role.

• E.g., the one-pass BNLJ join reads one relation - the smaller - into main
memory.

• Left relation (the smaller) is called the build relation.

• Right relation, called the probe relation, is read a block at a time and
its tuples are matched in main memory with those of the build
relation.

• Other join algorithms that distinguish between their arguments:

• Nested-Loop join, where we assume the left argument is the
relation of the outer loop.

• Index-join, where we assume the right argument has the index.

• Hash-join, where we need the smaller be less than M2

Join of two relations

• When we have the join of two relations, we need to optimize
the order of the arguments.

• The preferred order is to have the smaller relation on the left

Join Trees for more than two
relations

• When the join involves more than two relations, the

number of possible join trees grows rapidly.

E.g. suppose R, S, T, and U, being joined. How many possible

join trees?

• There are 5 possible shapes for the tree.

• Each of these trees can have the four relations in any order.

So, the total number of trees is 5*4! =5*24 = 120 different

trees!!

Types of join trees

left-deep tree
All right children

are leaves

bushy tree righ-deep tree
All left children are

leaves.

Considering only Left-Deep Join Trees

Good choice because:

1. The number of possible left-deep trees with a given
number of leaves is large, but not nearly as large as the
number of all trees.

2. Left-deep trees for joins interact well with common join
algorithms - nested-loop joins and one-pass join in
particular.

Number of plans with Left-Deep Join Trees

• For n relations, there is only one left-deep tree shape, to which
we may assign the relations in n! ways.

• However, the total number of tree shapes T(n) for n relations is
given by the recurrence:

• T(1) = 1

• T(n) =i=1…n-1 T(i)T(n - i)

And for each shape – n! possible assignments

We may pick any number i between 1 and n - 1 to be the number of leaves in
the left subtree of the root, and those leaves may be arranged in any of the T(i)
ways that trees with i leaves can be arranged. Similarly, the remaining n-i
leaves in the right subtree can be arranged in any of T(n-i) ways.

For example, for 6 relations there are 30,240 different trees, of which only 6!,
or 720 are left-deep trees

Left-Deep Trees and One Pass Join
Algorithm with pipelining

• A left-deep join tree that is computed by a
one-pass algorithm requires main-memory
space for two of the temporary relations any
time.

• Left argument is the build relation; i.e.,
held in main memory.

• To compute R❖S, we need to keep R
in main memory, and as we compute
R❖S we need to keep the result in
main memory as well – to use as a build
relation for the next step.

• Thus, we need B(R) + B(R❖S) buffers.

• And so on…

Searching for the best order of joins

• Exhaustively enumerating all possible join orders (even in
left-deep trees) is not feasible (n!)

• Two main algorithms:

1. Dynamic programming

Use the best plan for (k-1)-way join to compute the best k-
way join

2. Greedy heuristic algorithms

Start with the smallest-cost join, and add one best at a
time

Dynamic Programming algorithm

• 70s, seminal work on join order optimization in System R

• The best way to join k relations is drawn from k plans in
which the left argument is the least cost plan for joining k-1
relations

BestPlan (A,B,C,D,E) = min of (
BestPlan (A,B,C,D) ⋈ E,
BestPlan (A,B,C,E) ⋈ D,
BestPlan (A,B,D,E) ⋈ C,
BestPlan (A,C,D,E) ⋈ B,
BestPlan (B,C,D,E) ⋈ A)

Dynamic Programming algorithm:
Complexity

• Finds optimal join order but must evaluate all 2-way, 3-way,
…, n-way joins (n choose k)

• Time O(n*2n), Space O(2n)

• Exponential complexity, but joins on > 10 relations are rare

Dynamic Programming: additional
considerations

• Choosing the best join order or algorithm for each subset of
relations may not be the best decision

• Sort-join produces sorted output that may be useful
(i.e., ORDER BY/GROUP BY, sorted on join attribute)

• Pipelining with nested-loop join

• Availability of indexes

Dynamic programming
with interesting order

• Identify interesting sort order. For each order, find the best plan for each

subset of relations (one plan per interesting property)

• Low overhead (few interesting orders)

BestPlan(A,B,C,D; sort order) = min of (

BestPlan(A,B,C; sort order) ⋈ D,

BestPlan(A,B,D; sort order) ⋈ C,

BestPlan(A,C,D; sort order) ⋈ B,

BestPlan(B,C,D; sort order) ⋈ A)

Partial Order Dynamic Programming

• Optimization of multiple parameters (i.e., response time,
network cost, throughput)

• Each plan assigned a p-dimensional cost vector
(generalization of interesting orders)

• Complexity: 2p explosion in search space (O(2p*n*2n) time,
O(2p*2n) space)

Heuristic Approaches

• Dynamic programming may still be too expensive

• Sample heuristics:

• Join from smallest to largest relation

• Perform the most selective join operations first

• Index-joins if available

• Precede Cartesian product with selection

• Most systems use hybrid of heuristic and cost-based
optimization

R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Singleton Sets

{R} {S} {T} {U}

Size 1000 1000 1000 1000

Cost 0 0 0 0

Best Plan R S T U

Note that the size is simply the size of the relation, while

cost = the size of the intermediate result (0 at this stage).

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example

R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Singleton Sets

{R} {S} {T} {U}

Size 1000 1000 1000 1000

Cost 0 0 0 0

Best Plan R S T U

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example

Also, because the initial sizes of all relations happened to be the same, we can select any
order in best plans for pairs – they give the same cost, and the same output size

R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example

Here, for each triple we select the best among all options:
For example, min for {R, S, T} = min ({R,S} + T, {R,T}+S, {S,T}+R)

Triples of Relations

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Size 10,000 50,000 10,000 2000

Cost 2000 5000 1000 1000

Best Plan (S ❖T) ❖ R (R ❖S) ❖ U (T ❖U) ❖ R (T ❖U) ❖ S

Example...cont’d

4 relations Cost

((S ❖T) ❖ R) ❖U 12,000

((R ❖S) ❖ U) ❖T 55,000

((T ❖U) ❖ R) ❖S 11,000

((T ❖U) ❖ S) ❖R 3,000

BestPlan(R,S,T,U) = min of (

BestPlan (R,S,T) ⋈ U,

BestPlan (R,S,U) ⋈ T,

BestPlan (S,T,U) ⋈ R,

BestPlan (R,T,U) ⋈ S)

Simple Greedy algorithm

• BASIS: Start with the pair of relations whose estimated join
size is smallest. The join of these relations becomes the
current tree.

• INDUCTION: Find, among all those relations not yet
included in the current tree, the relation that, when joined
with the current tree, yields the relation of smallest
estimated size.

Note, however, that it is not guaranteed to
get the best order.

Example of greedy algorithm

• The basis step is to find the pair of relations that have the smallest join.

• This honor goes to the join T ❖ U, with a cost of 1000. Thus, T ❖ U is the "current tree."

• We now consider whether to join R or S into the tree next.

• We compare the sizes of (T ❖ U) ❖ R and (T ❖ U)❖S.

• The latter, with a size of 2000 is better than the former, with a size of 10,000. Thus, we pick as
the new current tree (T ❖ U)❖S.

• Now there is no choice; we must join R at the last step, leaving us with a total cost of 3000,
the sum of the sizes of the two intermediate relations.

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

When optimal-cost plan is selected, we still have variations
on selecting physical implementation for each operator

Logical vs. Physical Optimization

• Logical optimization:

• Find equivalent plans that are more efficient

• Intuition: Minimize # of tuples at each step by
changing the order of RA operators

• Physical optimization:

• Find algorithm with lowest IO cost to execute
our plan

• Intuition: Calculate based on physical
parameters (buffer size, etc.) and estimates of
data size (histograms)

Execution

SQL Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan

RA Plan Execution
• Natural Join / Join:

• We saw how to use memory & IO cost considerations to pick the
correct algorithm to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:

• We saw how to use indexes to aid selection

• Can always fall back on scan / binary search as well

• Projection:

• The main operation here is finding distinct values of the project
tuples; we briefly discussed how to do this with e.g. hashing or
sorting

We already know how to execute
all the basic operators!

Exposing the optimizer:
MS SQL Server

SELECT DISTINCT(City) FROM Person.Address

explain

Exposing the optimizer:
MS SQL Server
SELECT FirstName, LastName
FROM Person.Contact AS C

JOIN Sales.Individual AS I
ON C.ContactID = I.ContactID

JOIN Sales.Customer AS Cu
ON I.CustomerID = Cu.CustomerID

WHERE Cu.CustomerType = 'I'

explain

Summary
• Main optimization rules:

1. Push  as far down as possible

2. Do splitting of complex conditions in  in order to push  even
further

3. Push  as far down as possible, introduce new early  (but take
care for exceptions)

4. Combine  with  to produce -joins or equijoins

5. Select order of joins

• To choose best plans – need to estimate sizes of intermediate relations

• To choose best physical operators – use estimated outputs of
intermediate operations

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

