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RDBMS query optimizer: steps

• Convert parsed SQL into corresponding 
RA expression

• Apply known algebraic transformations 
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative 

physical implementations
• Choose physical plan with min I/Os
• Execute

improve logically



Cost-based query optimization

• Sometimes we don’t need to compute the cost to decide 
applying some heuristic transformation. 

• E.g. Pushing selections down the tree, can be 
expected almost certainly to improve the cost of a 
logical query plan. 

• However, there are points where estimating the cost both 
before and after a transformation will allow us to apply a 
transformation where it appears to reduce cost and avoid 
the transformation otherwise. 



Example: which plan to choose

Initial logical 
query plan

Two candidates for the 
best logical query plan. 
Which one to choose?



Parameters to estimate the cost

• R: the name of the relation on disk

• B(R): number of blocks of R

• T(R): number of tuples of R

• V(R, a): number of distinct values in column a of R

Plus:

• Indexes

• Clustered-unclustered



Estimating the output of each 
operation
• How can we estimate B(R) and T(R) in an intermediate 

relation? 

• We don’t want to execute the query in order to learn the 
sizes. So, we need to estimate them. 

Rules about estimation formulas:

1. Give (somehow) accurate estimates 

2. Easy to compute



Estimating the output: Projection

The size of a (bag) projection is the only one we can compute 
exactly.

1. Bag projection retains duplicates, so the number of tuples 
T(R) in the result is the same as in the input.

2. Result tuples are usually shorter than the input tuples.

So what changes in the parameters 
of the output relation?



Estimating the output: Selection
Equality: S = A=c (R)

We can estimate the size of the result as

T(S) = T(R) / V(R,A)

Range: S = A<c (R)

On average, T(S) would be T(R)/2, but from practice: 

T(S) = T(R)/3

Inequality: S = Ac (R)

Then, an estimate is: T(S) = T(R) * [ (V(R,A)-1)/V(R,A) ], 

or close to

T(S) = T(R)



Estimating the output: 
Selection with conjunction
S = C AND D(R) = C(D(R))

First estimate T(D(R)) and then use this to estimate T(S).

Example

S = a=10 AND b<20(R)

T(R) = 10,000, V(R,a) = 50

T(S) = (1/50)* (1/3) * T(R) = 67

Note: Watch for selections like: 

a=10 AND a>20(R)

Remember? Splitting rule

Why?



Cost-based optimization

1. Estimating cost of intermediate results

2. Maintaining vital statistics

3. Selecting order of joins



Estimating the output: Selection

Equality: S = A=c (R)

T(S) = T(R) / V(R,A)

Range: S = A<c (R)

T(S) = T(R)/3

Inequality: S = Ac (R)

T(S) = T(R)



Estimating the output: 
Selection with disjunction

S = C OR D(R)

Add up: T(S) = T(C(R)) + T(D(R)).

Problem: It’s possible that T(S)T(R)! 

A more accurate estimate

Let: 

T(R)=n, 

m1 = size of selection on C, and 

m2 = size of selection on D. 

Then T(S) = n(1-(1-m1/n)(1-m2/n)) Why?



Selection with disjunction: 
example

Simple: T(S) = T(C(R)) + T(D(R))

Accurate: T(S) = n(1-(1-m1/n)(1-m2/n))

• Example: S = a=10 OR b<20(R). 

T(R) = 10,000, V(R,a) =50

• Simple estimation: T(S) = 3533

• More accurate: 

n = 10000, m1 = T(R)/V(R,a)=200, m2 = T(R)/3=3333 

T(S) = 10000 *[1 - (1 – 200/10000)*(1 – 3333/10000) ] =3466 



Natural Join R(X,Y) ❖ S(Y,Z)

• Anything could happen!

Extremes

• No tuples join 

T(R ❖ S) = 0

• All tuples join: i.e. R.Y=S.Y = a

T(R ❖ S) = T(R)*T(S)



Natural Join size estimation: heuristics

Estimate size of: P = R(X,Y) ⋈ S(Y,Z)

If V(R,Y) ≤ V(S,Y), then (in the worst case) each tuple r of R is going match 

with some tuples of S. How many tuples on average that match to a given 

value of Y? T(S)/V(S,Y) tuples of S.

Hence, 

T(P) = T(R)*T(S)/V(S,Y)

By a similar reasoning,  for the case when V(S,Y)  V(R,Y), we get 

T(P) = T(S)*T(R)/V(R,Y)

In summary:   T(P) = T(R)*T(S)/max{V(R,Y),V(S,Y)}



Join output estimation: example
R(a,b):   T(R)=1000,  V(R,b)=20

S(b,c): T(S)=2000,   V(S,b)=50, V(S,c)=100

U(c,d):  T(U)=5000,  V(U,c)=500

a. Estimate the size of intermediate outputs for (R ❖ S) ❖ U

T(R ❖ S) = 1000*2000 / 50  = 40,000 

T ((R ❖ S)❖ U) = 40000 * 5000 / 500 = 400,000

b. Estimate the size of intermediate outputs for R ❖ (S ❖ U)

T(S ❖ U) = 20,000

T(R ❖ (S ❖ U)) = 1000*20000 / 50 = 400,000

T(R ❖ S) = T(R)*T(S)/max{V(R,Y),V(S,Y)}

Estimate of final result should not depend on the evaluation order! 

intermediate 
results could be of 
different sizes



c. Yet another order for R ❖ S ❖ U: (R  U) ❖ S

R(a,b):   T(R)=1000,  V(R,b)=20

S(b,c): T(S)=2000,   V(S,b)=50, V(S,c)=100

U(c,d):  T(U)=5000,  V(U,c)=500

T(R  U) = 1000*5000 = 5,000,000 

T((R  U)❖R.b=S.b AND U.c=S.c S) = 5,000,000 * 2000 / (50 * 500) = 400,000

Note that the cardinality of b’s in 
the product is 20 (=V(R,b)), and the 
cardinality of c’s is 500 (=V(U,c)).

T(R ❖ S) = T(R)*T(S)/max{V(R,Y),V(S,Y)}

Join output estimation: more



T(R ❖ S) = 1000*2000 / 50  = 40,000 

T ((R ❖ S)❖ U) = 40000 * 5000 / 500 = 400,000

T(S ❖ U) = 20,000

T(R ❖ (S ❖ U)) = 1000*20000 / 50 = 400,000

T(R  U) = 1000*5000 = 5,000,000 

T((R  U)❖ S) = 5,000,000 * 2000 / (50 * 500) = 400,000

Join output estimation: the 
question is…

T(R)=1000

T(U)=5000

T(S)=2000

Which order is better?

A

B

C



Size estimates for other operators

Cartesian product: T(R  S) = T(R) * T(S)

Bag Union: T(R) + T(S)

Set union:

larger + half  the smaller. 

Intersection: half the smaller. 

Difference: T(R-S) = T(R) - 1/2*T(S)

Why?

Because a set union can be as large as the sum of sizes or as small as the 
larger of the two arguments. Something in the middle is suggested.

Because intersection can be as small as 0 or as large as the sizes of the 
smaller. Something in the middle is suggested.

Because the result can be between T(R) and T(R)-T(S). Something in the 
middle is suggested.

Why?



Size estimates for other operators (contd.)

Duplicate elimination  in (R(a1,...,an)):

The size ranges from 1 to T(R).  

T((R))= V(R,[a1...an]), if available (but usually not available). 

Otherwise: T((R))= min[V(R,a1)*...*V(R,an), 1/2*T(R)] is suggested. 

Grouping and Aggregation:

similar to , but only with respect to grouping attributes.

Why?

V(R,a1)*...*V(R,an) is the upper limit on the number of distinct tuples that 

could exist

1/2*T(R) is because the size can be as small as 1 or as big as T(R)



Exercises for size estimation

Estimate the sizes of relations that are the results of the following 
expressions:

a) W ⋈ X ⋈ Y ⋈ Z

b) σa=10 (W)

c) σc=20 (W)

d) σc=20 (Y) ⋈ Z

e) W x Y

f) σ d>10 (Z)

g) σ a=1 AND b=2 (W)

h) σ a=1 AND b>2 (W)

W (a,b) X (b,c) Y (c,d) Z (d,e)

T (W) = 100 T (X) = 200 T (Y) = 300 T (Z) = 400

V (W, a) = 20 V (X, b) = 50 V (Y, c) = 50 V (Z, d) = 40

V (W, b) = 60 V (X, c) = 100 V (Y, d) = 50 V (Z, e) = 100



Computing the statistics

• In order to compute sizes of intermediate relations we need to know 

T(R) and V(R) for each relation. In addition we would want to know 

more precise estimates for each attribute value if the values are 

skewed

• Computation of statistics by DBMS is triggered automatically or 

manually.

• T(R)’s, and V(R,A)’s are just aggregation queries (COUNT queries).

• However, they are expensive to compute after each update 

operation. 



Incremental computation of 
statistics
Maintaining T(R):

Add 1 for every insertion and subtract 1 for every deletion.



Incremental computation of 
statistics
Maintaining V(R,A):

If there is an index on attribute A of a relation R, then:

On insert into R, we must find the A-value for the new 
tuple in the index anyway, and so we can determine 
whether there is already such a value for A. If not 
increment V(R,A).

On deletion…

If there is no index on A, the system could in effect create a 
rudimentary index by keeping a data structure (e.g. B-Tree) 
that holds every distinct value of A.

Final option: Sample the relation. 



For non-uniform value distributions we 
want to estimate frequency of each value

• For index selection:

• What is the cost of an index lookup?

• Also for deciding which algorithm to use:

• Ex: To execute R ⋈ 𝑆, which join algorithm should DBMS 
use?

• What if we want to compute 𝝈𝑨>𝟏𝟎(𝐑) ⋈ 𝝈𝑩=𝟏(𝑺)?

Histograms provide a way to efficiently 
store estimates of these quantities



Histograms

• A histogram is a set of value ranges (“buckets”) and the 
frequencies of values occurring in those buckets

• How to choose the buckets?

• Equiwidth & Equidepth

• Turns out high-frequency values are very important
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How do we 
compute how 
many values 
between 8 and 
10? 
(Yes, it’s obvious)

Problem: counts take up too much space!

Store counts for each distinct value



Full vs. Uniform Counts
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Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we select the “bucket” sizes?



Equi-width
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Equi-depth
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number of items (total frequency)



Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)



Maintaining Histograms

• Histograms require that we update them!

• Typically, you must run/schedule a command to update 
statistics on the database

• Out of date histograms can be terrible!

• There is research work on self-tuning histograms and the 
use of query feedback

• Oracle 11g



Nasty example
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1. we insert many tuples with value > 16
2. we do not update the histogram
3. we ask for values > 20?



Compressed Histograms

• One popular approach: 

1. Store the most frequent values and their counts 
explicitly

2. Keep an equi-width or equi-depth one for the rest of the 
values

People continue to try all manner of fanciness here
wavelets, graphical models, entropy models,… 
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Cost-based transformations of RA 
trees

Initial logical 
query plan

Two candidates for the 
best logical query plan



Estimating sizes of relations to be 
joined
(a)

The (estimated) size of a=10(R) is 

5000/50 = 100

The (estimated) size of (a=10(R)) is 

min{1*100, 100/2} = 50

The (estimated) size of (S) is 

min{200*100, 2000/2} = 1000

T((R))= min[V(R,a1)*...*V(R,an), 1/2*T(R)]



(b)

The (estimated) size of a=10(R) :

5000/50 = 100

The (estimated) size of a=10(R)❖ S : 

100*2000/200 = 1000

Estimating sizes of relations to be 
joined



Comparing two plans

Adding up the costs of plan (a) and (b), (sizes of intermediate relations) we get:

(a) 1150  

(b) 1100

So, the conclusion is that plan (b) is better, 

i.e. deferring the duplicate elimination to the end is a better plan for this query.



Choosing 
an order of joins



Choosing a join order

• Critical problem in cost-based optimization: Selecting an 
order for the (natural) join of three or more relations.

• Cost is the total size of all intermediate relations. 

• We have, of course, many possible join orders 

• Does it matter which one we pick?

• If so, how do we do this? 



Basic intuition

• T(R ❖ S) = 1000*2000 / 50  = 40,000

• T((R ❖ S) ❖ U) = 

40000 * 5000 / 500 = 400,000

• T(S ❖ U) = 2000*5000 / 500 = 20,000

• T(R ❖ (S ❖ U)) = 1000*20000 / 50 =
400,000

R(a,b), T(R) = 1000, V(R,b) = 20

S(b,c), T(S) = 2000, V(S,b) = 50, V(S,c) = 100

U(c,d) T(U) = 5000, V(U,c) = 500

(R ❖ S) ❖ U       versus R ❖ (S ❖ U)?

Both plans are estimated to 
produce the same number of tuples 
(no coincidence here).

However, the first plan is more 
costly than the second plan because 
the size of its intermediate relation
is bigger than the size of the 
intermediate relation in the second 
plan (40K versus 20K) 



Asymmetricity of Joins

• In some join algorithms, the roles played by the two argument relations are 
different, and the cost of join depends on which relation plays which role. 

• E.g., the one-pass BNLJ join reads one relation - the smaller - into main 
memory.

• Left relation (the smaller) is called the build relation. 

• Right relation, called the probe relation, is read a block at a time and 
its tuples are matched in main memory with those of the build 
relation.

• Other join algorithms that distinguish between their arguments:

• Nested-Loop join, where we assume the left argument is the 
relation of the outer loop.

• Index-join, where we assume the right argument has the index.

• Hash-join, where we need the smaller be less than M2



Join of two relations

• When we have the join of two relations, we need to optimize 
the order of the arguments.

• The preferred order is to have the smaller relation on the left



Join Trees for more than two 
relations

• When the join involves more than two relations, the 

number of possible join trees grows rapidly. 

E.g. suppose R, S, T, and U, being joined. How many possible 

join trees? 

• There are 5 possible shapes for the tree. 

• Each of these trees can have the four relations in any order. 

So, the total number of trees is 5*4! =5*24 = 120 different 

trees!!



Types of join trees

left-deep tree
All right children 

are leaves

bushy tree righ-deep tree
All left children are 

leaves.



Considering only Left-Deep Join Trees

Good choice because:

1. The number of possible left-deep trees with a given 
number of leaves is large, but not nearly as large as the 
number of all trees. 

2. Left-deep trees for joins interact well with common join 
algorithms - nested-loop joins and one-pass join in 
particular.



Number of plans with Left-Deep Join Trees 

• For n relations, there is only one left-deep tree shape, to which 
we may assign the relations in n! ways. 

• However, the total number of tree shapes T(n) for n relations is 
given by the recurrence:

• T(1) = 1

• T(n) =i=1…n-1 T(i)T(n - i)

And for each shape – n! possible assignments

We may pick any number i between 1 and n - 1 to be the number of leaves in 
the left subtree of the root, and those leaves may be arranged in any of the T(i)
ways that trees with i leaves can be arranged. Similarly, the remaining  n-i
leaves in the right subtree can be arranged in any of T(n-i) ways.

For example, for 6 relations there are 30,240 different trees, of which only 6!, 
or 720 are left-deep trees



Left-Deep Trees and One Pass Join 
Algorithm with pipelining 

• A left-deep join tree that is computed by a 
one-pass algorithm requires main-memory 
space for two of the temporary relations any 
time.

• Left argument is the build relation; i.e., 
held in main memory.

• To compute R❖S, we need to keep R 
in main memory, and as we compute 
R❖S we need to keep the result in 
main memory as well – to use as a build 
relation for the next step. 

• Thus, we need B(R) + B(R❖S) buffers. 

• And so on…



Searching for the best order of joins

• Exhaustively enumerating all possible join orders (even in 
left-deep trees) is not feasible (n!)

• Two main algorithms:

1. Dynamic programming

Use the best plan for (k-1)-way join to compute the best k-
way join

2. Greedy heuristic algorithms

Start with the smallest-cost join, and add one best at a  
time



Dynamic Programming algorithm

• 70s, seminal work on join order optimization in System R

• The best way to join k relations is drawn from k plans in 
which the left argument is the least cost plan for joining k-1 
relations

BestPlan (A,B,C,D,E) = min of (
BestPlan (A,B,C,D) ⋈ E,
BestPlan (A,B,C,E) ⋈ D,
BestPlan (A,B,D,E) ⋈ C,
BestPlan (A,C,D,E) ⋈ B,
BestPlan (B,C,D,E) ⋈ A )



Dynamic Programming algorithm: 
Complexity

• Finds optimal join order but must evaluate all 2-way, 3-way, 
…, n-way joins (n choose k)

• Time O(n*2n), Space O(2n)

• Exponential complexity, but joins on > 10 relations are rare



Dynamic Programming: additional 
considerations

• Choosing the best join order or algorithm for each subset of 
relations may not be the best decision

• Sort-join produces sorted output that may be useful 
(i.e., ORDER BY/GROUP BY, sorted on join attribute)

• Pipelining with nested-loop join

• Availability of indexes



Dynamic programming 
with interesting order

• Identify interesting sort order. For each order, find the best plan for each 

subset of relations (one plan per interesting property)

• Low overhead (few interesting orders)

BestPlan(A,B,C,D; sort order) = min of (

BestPlan(A,B,C; sort order) ⋈ D,

BestPlan(A,B,D; sort order) ⋈ C,

BestPlan(A,C,D; sort order) ⋈ B,

BestPlan(B,C,D; sort order) ⋈ A )



Partial Order Dynamic Programming

• Optimization of multiple parameters (i.e., response time, 
network cost, throughput)

• Each plan assigned a p-dimensional cost vector 
(generalization of interesting orders)

• Complexity: 2p explosion in search space (O(2p*n*2n) time, 
O(2p*2n) space)



Heuristic Approaches

• Dynamic programming may still be too expensive

• Sample heuristics:

• Join from smallest to largest relation

• Perform the most selective join operations first

• Index-joins if available

• Precede Cartesian product with selection

• Most systems use hybrid of heuristic and cost-based 
optimization



R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Singleton Sets

{R} {S} {T} {U}

Size 1000 1000 1000 1000

Cost 0 0 0 0

Best Plan R S T U

Note that the size is simply the size of the relation, while 

cost = the size of the intermediate result (0 at this stage). 

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example



R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Singleton Sets

{R} {S} {T} {U}

Size 1000 1000 1000 1000

Cost 0 0 0 0

Best Plan R S T U

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example

Also, because the initial sizes of all relations happened to be the same, we can select any 
order in best plans for pairs – they give the same cost, and the same output size



R(a,b)

V(R,a) = 100

V(R,b) = 200

S(b,c)

V(S,b) = 100

V(S,c) = 500

T(c,d)

V(T,c) = 20

V(T,d) = 50

U(d,a)

V(U,a) = 50

V(U,d) = 1000

Pairs of relations

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5000 1M 10,000 2000 1M 1000

Cost 0 0 0 0 0 0

Best Plan R ❖S R ❖T R ❖U S ❖T S ❖U T ❖U

DP algorithm Example

Here, for each triple we select the best among all options: 
For example, min for {R, S, T} = min ({R,S} + T, {R,T}+S, {S,T}+R)

Triples of Relations

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Size 10,000 50,000 10,000 2000

Cost 2000 5000 1000 1000

Best Plan (S ❖T) ❖ R (R ❖S) ❖ U (T ❖U) ❖ R (T ❖U) ❖ S



Example...cont’d

4 relations Cost

((S ❖T) ❖ R) ❖U 12,000

((R ❖S) ❖ U) ❖T 55,000

((T ❖U) ❖ R) ❖S 11,000

((T ❖U) ❖ S) ❖R 3,000

BestPlan(R,S,T,U) = min of (

BestPlan (R,S,T) ⋈ U,

BestPlan (R,S,U) ⋈ T,

BestPlan (S,T,U) ⋈ R,

BestPlan (R,T,U) ⋈ S )



Simple Greedy algorithm

• BASIS: Start with the pair of relations whose estimated join 
size is smallest. The join of these relations becomes the 
current tree.

• INDUCTION: Find, among all those relations not yet 
included in the current tree, the relation that, when joined 
with the current tree, yields the relation of smallest 
estimated size. 

Note, however, that it is not guaranteed to 
get the best order.



Example of greedy algorithm

• The basis step is to find the pair of relations that have the smallest join. 

• This honor goes to the join T ❖ U, with a cost of 1000. Thus, T ❖ U is the "current tree."

• We now consider whether to join R or S into the tree next. 

• We compare the sizes of (T ❖ U) ❖ R and (T ❖ U)❖S. 

• The latter, with a size of 2000 is better than the former, with a size of 10,000. Thus, we pick as 
the new current tree (T ❖ U)❖S.

• Now there is no choice; we must join R at the last step, leaving us with a total cost of 3000, 
the sum of the sizes of the two intermediate relations.



RDBMS query evaluation

How does a RDBMS answer your query?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan

Execution

When optimal-cost plan is selected, we still have variations 
on selecting physical implementation for each operator



Logical vs. Physical Optimization

• Logical optimization:

• Find equivalent plans that are more efficient

• Intuition: Minimize # of tuples at each step by 
changing the order of RA operators

• Physical optimization:

• Find algorithm with lowest IO cost to execute 
our plan

• Intuition: Calculate based on physical 
parameters (buffer size, etc.) and estimates of 
data size (histograms)

Execution

SQL Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan



RA Plan Execution
• Natural Join / Join:

• We saw how to use memory & IO cost considerations to pick the 
correct algorithm to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:

• We saw how to use indexes to aid selection

• Can always fall back on scan / binary search as well

• Projection:

• The main operation here is finding distinct values of the project 
tuples; we briefly discussed how to do this with e.g. hashing or 
sorting

We already know how to execute 
all the basic operators!



Exposing the optimizer: 
MS SQL Server

SELECT DISTINCT(City) FROM Person.Address

explain



Exposing the optimizer: 
MS SQL Server
SELECT FirstName, LastName
FROM Person.Contact AS C

JOIN Sales.Individual AS I
ON C.ContactID = I.ContactID

JOIN Sales.Customer AS Cu
ON I.CustomerID = Cu.CustomerID

WHERE Cu.CustomerType = 'I'

explain



Summary
• Main optimization rules:

1. Push  as far down as possible

2. Do splitting of complex conditions in  in order to push  even 
further

3. Push  as far down as possible, introduce new early  (but take 
care for exceptions)

4. Combine  with  to produce -joins or equijoins

5. Select order of joins

• To choose best plans – need to estimate sizes of intermediate relations

• To choose best physical operators – use estimated outputs of 
intermediate operations

This simple set of tools allows us to greatly improve the 
execution time of queries by optimizing RA plans!


